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Abstract— We assess change in metastability to characterize 
age-effects on the dynamic repertoire of the functional networks 
at rest. Resting state fMRI signals from each subject (N=48) have 
been used and metastability is evaluated as the standard 
deviation of mean phase synchrony of BOLD signals across 
whole-brain as well as across known resting state networks. The 
results suggest that significant whole-brain metastability changes 
occur between middle to old age. We also demonstrate that static 
time-averaged FC largely undermines age-effects on the 
interaction between functional networks. Discriminant Function 
Analysis reveals existence of two different patterns of change in 
metastability, which maximally discriminates between two 
different processes of maturation and ageing.  

Keywords—functional MRI; Synchronization; Healthy Ageing; 
Metastability, connectome 

 

I. INTRODUCTION  
Intrinsic activity of the brain in the absence of any task 

demonstrates spontaneous fluctuation of the spatially 
distributed networks comprising synchronized regions [1] and 
at cortical level spatiotemporal patterns of these networks can 
be captured using functional MRI [2]. Using seed-based and 
whole-brain graph theoretical measures, studies have revealed 
age-related changes in these resting state-connectivity patterns 
[3-5].  These studies often report reorganization of functional 
networks and changed network properties across lifespan. 
Overall, long-range functional connectivity (FC) declines with 
age. However, connectivity within and between functional 
networks have shown more complex patterns of U or inverted 
U-shaped curve across lifespan [6]. Graph theoretical analyses 
of the networks of healthy subjects show that while local 
efficiency of functional networks declines across lifespan, 
global efficiency is maintained till the later age [7]. These 
network changes co-occur with the reduced task-specificity of 
functional networks during positive task performance [8], 
which might suggest flexibility of functional networks on top 
of declining structure [9-11]. 

 
 Most of these studies use static functional connectivity 
measures, the grand mean-FC averaged over time. However, 
recent evidences propose that functional organization of the 
brain at rest has rich dynamic repertoire, fluctuating between 

various possible states in time [12]. The change in dynamic-FC 
with age predicts brain maturity with good accuracy [13]. 
Flexibility of d-FC known as ‘metastability’ ; also correlate 
with flexible cognitive function [14].   

 Since elderly adults show change of behavioral strategies 
[15] and also altered spatiotemporal FC patterns, we 
hypothesize that: 1) metastability of resting state FC will vary 
significantly across age-groups. & 2) age-effect on 
metastability whould manifest differently across different 
resting state networks. We adapt an exploratory analysis 
approach.  

 First, using signal processing techniques on BOLD time-
series data, we improve temporal resolution of the imaging 
data and define metastability. Secondly, using graph theoretic 
approach, we detect communities that are consistent across 
age-groups. We investigate the significance of the first 
hypothesis of different metastability across age-groups in 
detected communities and in whole-brain. Furthermore, we 
divide brain regions in seven pre-defined functional networks 
namely: Control, Default Mode Network (DMN), Dorsal 
Attention Network (DAN), Ventral Attention Network (VAN 
or salience network),  Limbic System, Sensorimotor (SMN) 
and Visual Networks. We first assess age-effects on each of 
these individual networks. Finally, to test the second 
hypothesis of changed roles of resting state systems, we carry 
out discriminant function analysis (DFA) which explores linear 
combinations of these seven resting-state networks which 
contributes maximally in discriminating between healthy 
young, middle-aged and old subjects. 

 

II. MATERIALS AND METHODS 

A. Participants 
BOLD signal time-series data were obtained for 48 healthy 

participants (age: 18-80; mean: 41.55 years; 19 males) at the 
Berlin Centre for Advanced Imaging, Charité University, 
Berlin, Germany1. All participants gave written informed 
consent and the study was performed under compliance of 
laws and guidelines approved by the ethics committee of 
Charité University, Berlin. Participants did not show any sign 
of age-related neurodegenerative diseases under clinical 
testing procedures at the time of imaging. For the purpose of 

1 DR would like to acknowledge department of Neurology, Charité, 
Charitéplatz, Berlin for making the data available for this study and for his 
affiliation with the institute as postdoctoral research associate at the time of 
data acquisition. 



group level analysis in this study, subjects were further 
uniformly divided as follows: 16 healthy young adults (age: 
18-27; mean: 23.25 years), 16 healthy middle-aged adults 
(age: 28-51; mean: 38.11 years) and 16 healthy old adults 
(age: 54-80; mean: 65.2 years).  

 

B. Imaging Protocol and Functional Connectomes 
Functional MRI and T1-weighted scans (along with other 

sequences which are not pertinent to the current analysis) were 
acquired using 3T Siemens scanner. BOLD time-series were 
acquired at TR 1940 ms lasting 22 minutes (TE 30 ms, FA 
78°, 32 transversal slices (3 mm), voxel size 3 x 3 x 3 mm, 
FoV 192 mm).  The Virtual Brain pipeline was used for the 
preprocessing of the data. Further details regarding the 
preprocessing steps and image acquisition parameters can be 
found in [16]. Each participant’s functional images were 
registered to pre-processed T1-anatomical images and 
parcellated into 68 regions of interest (ROIs) using 
FREESURFER’s Desikan-Killiany atlas [17]. Regional time-
series were obtained by considering weighted average from 
voxel-wise time-series. Subject-specific functional 
connectivity (FC) matrices were obtained by applying z-
transformed pairwise Pearson correlation between each pairs 
of regional BOLD time-series as well as using phase-
synchrony between each pairs of filtered analytic BOLD 
signals (see Synchrony and Metastability section for details) 
[18]. 

 

 
Fig. 1. Illustration of the pipeline followed to characterize metastability. A. 
Preprocessed data is parcellated and regional BOLD signal is extracted. B. 
Hilbert transform is applied to filtered BOLD signals to find phase synchrony 
and metastability. 

 

  

 
 

Fig. 2. Centers of the regions categorized in seven resting state networks 
identified in Yeo et al and adapted for the Desikan-Killiany atlas used for this 
study. 

 

C. Synchrony and Metastability  
Each subject’s regional BOLD time-series signals were 

first band-pass filtered in narrow frequency-band 0.04-0.07Hz 
using Parks-McClellan optimal equiripple filter [18]. Analytic 
signal (𝑦!) was derived from each band-pass filtered original 
BOLD signal as follows: 

  𝑦! 𝑡 = 𝑥! 𝑡 + 𝑗ℋ 𝑥! 𝑡 =  𝑅𝑒!∅!(!) (2) 

Where, ℋ (𝑥!(𝑡))  represents Hilbert transform of the 
original signal 𝑥! 𝑡 for nth ROI. Analytic signal has advantage 
over original signal since it discards negative frequency 
components without loss of information and makes 
instantaneous phase (∅(𝑡)) of the signal accessible; hence 
allowing to explore relationships at higher temporal 
resolution. For each subject, at each time-point, the Kuramoto 
Order Parameter (R) then defines mean phase synchronization 
or instantaneous coherence in the network [19]: 

 

   𝑅! 𝑡 =  !
!!
| 𝑒!∅! !!!

!!! | (3) 

Here, Nc represents the number of regions in the network 
c. For whole-brain analysis, Nc=68; for the functional network 
analysis, Nc depends on the number of regions considered for 
that particular functional network.  Metastability (𝜉!) for each 
subject is then defined as the amount of variability of brain-
wide or community-wide coherence i.e., standard deviation of 
the Kuramoto Order Parameter. 
 
                       𝜉! =  !

!!!
 𝑅! 𝑡 −< 𝑅! 𝑡 > !!

!!!           (4) 
 

We use this measure of metastability to compare across 
age groups as well as across lifespan. Furthermore, subject 



specific functional connectivity matrices were obtained based 
on the instantaneous phase of the signal such that each entry 
FCij in the phase-based matrix FC represents cosine of 
instantaneous phase-difference between regions i and j 
(∅!(𝑡)  − ∅!(𝑡)) averaged over time [20]. These matrices were 
used for community detection across subjects.  
 

D. Community Detection & Hub Identification 
Brain Connectivity Toolbox [21] was used to investigate 

the modular organization of each participant’s FC networks.  
Modularity quality (Q) was determined by comparing the 
observed within-module connection density to the expected 
within-module connection density as follows:  

 Q= !
 !!

𝑎!" − 𝑝!"!" 𝛿 (𝜎! − 𝜎!) (1) 

Where, 2m is total weights of all connections in the 
network, aij and pij are respectively actual and expected 
weights of connections between nodes i and j. δ (∎)  is 
Kronecker delta function, whose value is one, when nodes i 
and j are in the same community and zero otherwise.  Here we 
used the variant of quality function adapted for 
accommodating negative edge weights [22]. Optimal 
community structure was obtained by maximizing Q-value for 
each partition according to the Newman’s algorithm [23]. 

The modularity algorithm was run for 1000 iterations for 
each participant’s FC. An optimal representative partition was 
determined with an iterative consensus-clustering algorithm, 
based on similarities in the 1000 near-optimal community 
partitions. Depending on the partition, hub regions were 
determined as the regions whose participation coefficient was 
greater than mean plus first standard deviation of all 
participation coefficient values for the subject’s community 
partition. Most consistent hubs across all subjects were than 
used as seeds to determine the communities, which were 
common across all subjects. 

Same procedure was repeated for the FCs obtained based 
on Pearson Correlation and phase-synchrony. As shown in 
Fig. 2 (bottom panel), number of communities detected was 
similar regardless of the method used for obtaining FC matrix. 
However, the phase-based FC determined fairly consistent 
communities across subjects.  

Apart from the communities obtained from the above 
procedure, we also subdivided each region of the brain in 
seven overlapping functionally important networks previously 
identified by Yeo et al [24](Fig. 2). Taking overlapping 
networks into consideration allow us to perform exploratory 
analysis to determine role of each of these networks in 
classification of healthy young, mid-age and old subjects.  

E. Statistical Analysis 
 For group level analysis, non-parametric one-way analysis 

of variance was performed using Kruskal-Wallis rank-test 
[25]. Post-hoc multiple comparison tests were performed if 
required [26]. To understand combined contribution of 

metastability scores of each of the seven resting state 
networks, we adapted Discriminant Function Analysis [27]. 

III. RESULTS 

A. Most consistently detected communities across subjects.  
Fig.3 (top panel) shows communities detected on the mean 

FC matrices obtained from two different procedures: 
correlation based (top left) and phase-based (top right). 
Number of communities varied between three to seven 
communities per subject. No significant difference was 
observed between standardized Q-scores obtained on 
community detection from both the FCs (t=10-4, p=0.5, paired 
t-test), which suggests that quality of partitioning was not 
compromised while using phase-based FC.   

Set of hub regions for each individual network was 
determined by selecting the regions having participation 
coefficient greater than mean plus first standard deviation of 
the distribution. Hub list of the most participants included left 
precuneus, bilateral rostral middle-frontal, right superior 
parietal cortex, caudal anterior cingulate gyrus, precentral 
cortex and entorhinal cortex. To determine most consistent 
partitions across subjects, each of these hub regions were 
considered as seed and consistency of regions falling in the 
same community as of seed was determined across subjects. 
Highest number of participants (N=34) had 3 partitions in 
common: 1. Community1- Default mode/limbic system 
identified by bilateral precuneus, inferior temporal, inferior 
parietal, rostral anterior cingulate and isthmus cingulate cortex 
as well as part of inferior frontal regions. 

2.  Community2- Control/attention network identified by 
bilateral frontal-orbital regions, caudal anterior cingulate, 
insula and supramarginal cortex. 

3. Community3- Sensorimotor network involving bilateral 
precentral, postcentral, paracentral gyrus, superior parietal 
lobule, cuneus, lingual gyrus and regions from primary 
occipital cortex. 

 

B. Metastability of elderly adults is significantly higher than 
that of middle-aged adults. 
 

Kruskal-Wallis rank test was used for comparing median 
ranks across young, middle-aged and old group. The one-way 
ANOVA test confirmed that there was statistically significant 
difference between metastability of young, middle-aged and 
elderly groups (H(2)=6.55, p=0.038) with a mean rank of 
25.31 for young, 18.68 for mid-age and 31.41 for old group. A 
post-hoc Scheffe’s test showed that metastability of elderly 
adults differed significantly from that of the middle-aged 
subjects at p=0.038. No significant differences were observed 
between mean ranks of the other two pairs of groups. Fig. 4 
summarizes the group-wise statistics in box-plot.  
 

Similar analysis was performed for the three communities 
obtained as discussed in above section. Mean values of 
metastability followed a U-shaped trend across age groups, 
with middle-aged subjects demonstrating the lowest 



metastability in all the communities. However, not all of these 
results were significant. Fig. 3 (bottom panel) shows mean 
measures of metastability ( ±  standard error) across all 
communities. Metastability of elderly adults in 
control/attention network (H (2)=10.67, p=0.0048) was 
significantly different than that of middle-aged subjects. No 
significant age-effects were observed in the metastability of 
other communities. 

 

C. Metastability of known functional network shows 
statistically significant differences across age-groups. 
As shown in previous analysis, metastability of middle-

aged and old age groups across detected communities was 
significantly different. To gain understanding of functional 
importance of metastable regions involved in these 
communities, we further assigned each region to one or more 
resting state functional networks following the procedure from 
[28]. Metastability of each functional network for each subject 
was calculated as the standard deviation of temporal 
coherence of regions involved in these networks as explained 
previously. First, nonparametric univariate Kruskal-Wallis 
tests were performed for test of equality of group means on 
each of these networks. Results are summarized in table 1 & 
2. 

 
 
 

 
Fig. 3. Communities detected by correlation-FC (top-left) and phase-based FC 
(top-right) and metastability of the most consistent communities across 
subjects (bottom). CommA: control + ventral attention regions (identified 
hub: Insula); CommB: Default Mode/limbic regions (identified hub: 
Precuneus); CommC: Sensorimotor regions (identified hub: Precentral gyus)., 
**p<0.005, *p<0.05 , Kruskal-Wallis test of mean ranks). 

 
Fig. 4.  Box-plot for whole-brain metastability at rest for three age-groups. 
Horizontal lines represent mean ranks, notches represent 95% confidence 
interval. Mean rank of middle-aged group is significantly less than that of old 
group (p=0.038). 

Significant age-effects were observed in control network, 
dorsal and ventral attention networks and limbic system 
(p<0.05). Post-hoc analysis revealed significant difference in 
mean ranks of metastability of younger and middle-aged 
group for the control network and ventral attention network. 
Mean ranks of middle-aged and older group were significantly 
different in dorsal attention network and limbic system. Mean 
ranks of DMN, SMN and Visual networks for any group-pairs 
were not significant.  

 
 

 

TABLE I.  UNIVARIATE TESTS OF EQUALITY OF  GROUP MEANS  

 
 

Chi-sq sig young midage old 

Control 6.43 .040* 30.94  18.44 26.03 
DMN 3.74 .154 21.94 22.56 30.66 
DAN 10.72 .004* 25.81 16.74 32.97 
VAN 11.85 .003* 29.50 15.38 30.72 
Limbic 7.94 .018* 21.75 20.32 33.22 
SMN 4.35 .114 24.88 20.03 30.41 
Visual 4.53 .104 19.88 24.56 30.59 

TABLE II.  POST-HOC MULTIPLE COMPARISONS  

 Post-hoc sig 
Control Young-midage 0.032 
DMN NA - 
DAN midage-old 0.032 
VAN young-midage  

midage-old 
0.0127 
0.0058 

Limbic midage-old 0.0259 
SMN NA - 
Visual NA - 

 



D. Discriminant Function Analysis and Importance of RSNs 
Since metastability of different networks seem to be 

affected differently with age, we perform discriminant 
function analysis (DFA) to investigate which linear 
combination of the metastability of resting state networks can 
help discriminate between the three age groups significantly.  

The metastability measures of 7 RSNs (predictors) were 
transformed into two-dimensional orthogonal space (defined 
by basis DF1 and DF2, referred as functions hereafter), which 
maximally discriminate between the age groups. Chi-square 
test of Wilk’s lambda confirmed that mean ranks of the 
functions are significantly different across age groups (table 
3). Loadings of each observed variable on the two functions is 
plotted in Fig. 5. 

 

TABLE III.  WILK’S LAMBDA  

Test of 

Function 

Wilk’s 

Lambda 

Chi-square df Sig. 

1 .439 34.560 14 .002 

2 .693 15.427 6 .017 

 
 

 
Fig. 5 Loadings of each variable on two functions (DF1 and DF2) identified 
by DFA. DF1 largely reflects the previously reported well-known dichotomy 
between salience, control (task positive) and DMN (task negative) networks 
while DF2 captures interesting pattern with strong positive effects of Ventral 
and Dorsal attention network together with strong negative effects of Control 
and Default Mode Network.  

DF1 reflects the well known organization [2, 29] of “task-
positive” (namely Control, Dorsal and Ventral attention 
systems) and “task negative” Default mode network. DF2 
revealed interesting pattern of co-ordination between DMN 
and Control networks, which contrasts with attention 
networks. This pattern accounts for ~46% of the total variance 
in transformed space. Sensorimotor, visual and limbic systems 
negatively contribute to DF1 but positively contribute to DF2. 
 

 All groups were successfully discriminated on the two 
axis (Fig. 6).  72.9% of original grouped cases were correctly 
classified by the discriminant function. Leave-one out cross-
validation resulted in 60.3% of accuracy. DF1 significantly (H 
(2)=15.9; p=0.0004) distinguished between young and middle-
aged group (p=0.0002) as well as between young and elderly 
groups (p=0.0032) mostly on the basis of contrast between 
DMN and salience + control networks with younger subjects 
exhibiting lower metastability in DMN but higher 
metastability in salience, dorsal attention and control 
networks. DF2 significantly (H(2)=16.69; p=0.0002) 
discriminated between young and old groups (p<0.0049) as 
well as between middle-aged and old group (p=0.0004) with 
older subjects having higher metastability in dorsal and ventral 
attention networks but lower metastability in control and 
DMN. Fig. 7 captures rank-relationship between metastability 
of groups along the directions of DF1 and DF2. 
 

 
Fig. 6 DF1 against DF2. 72.9 % (and 60.3% after leave-one out cross-
validation) of original data-points were successfully classified. Elderly adults 
have higher variance along positive DF2 axis while young and middle-aged 
adults show higher variance along positive and negative DF1 axis 
respectively. 

The results of discriminant analysis suggest that there are 
two different combination of resting state network systems 
that are affected by age; each affected at the different point in 
lifespan. System ascribed to DF1 operates after the young age; 
during maturation and system described by DF2 operates at 
the old age, during ageing process.  

 

IV.   CONCLUSIONS & DISCUSSION 
 

We studied effect of age on dynamic repertoire of the 
intrinsic activity of the brain. We evaluated metastability (i.e., 
ability of BOLD signals of cortical regions to co-ordinate and 
compete in time [30]) across three uniformly distributed age 
groups: young, middle-aged and old. We found significant 
differences in whole-brain metastability between old and 
middle-aged groups suggesting that older participants are 
likely to visit more distinct ‘states’ at rest than the middle-
aged participants.  Yeo et al.[31] has shown that functional  



 
Fig. 7 Comparison of mean ranks on DF1 and DF2 obtained from post-hoc 
multiple comparisons on results of non-parametric one-way ANOVA. 
*p<0.05, **p<0.005, ***p<0.0005  

entropy of the resting state networks increases with age, 
suggestive of more spatially widespread correlation pattern 
with age. Our results partially confirm this finding in temporal 
domain suggesting that increased entropy in static-FC of 
elderly adults might be a result of the increased variability in 
dynamic FC. In contrast to their results, such effect was not 
significant between young to middle-age. 
 

Grady et al.[32] used partial least squares to assess age-
effect on standard deviation of BOLD signals and confirmed 
wide-spread age-related patterns with some regions showing 
increased variability while others showing decease with age. 
However, the study contained only young and elderly groups. 
Our results show that more robust patterns of variability exist 
between young to middle-aged as well as middle-aged to old. 

 
To understand the metastable behavior across 

topologically distinct functional networks, we use community 
detection algorithm on mean-FC and compared metastability 
of detected communities across age groups. We found 
significant difference between middle-to-old age groups only 
in one community, which contained regions from control 
network and ventral attention network. However, on applying 
multivariate discriminant analysis across networks show that 
richer age-related differences exist due to combined effects of 
these networks, which remain largely undetectable by 
considering only static mean-FC for graph theoretic analysis. 
We also find that default mode network does not show 
significant age-effects in the independent univariate analysis. 
However, when taken together with other networks, it does 
contribute to the predictability of age. 

 
Most interesting results were obtained from the 

discriminant analysis. We found two different patterns of 
change in metastability each of which significantly 
discriminate between maturation (young to middle-age) and 
ageing (middle-age to old) processes. Precisely, first pattern 
revealed higher metastability in control and attention systems 

with lower metastability of default mode, limbic and 
sensorimotor systems in young subjects compared to other two 
groups. Second pattern showed reversed pattern in 
metastability of control, limbic and somatosensory (SMN and 
visual) networks. Precisely, old subjects have significantly 
higher metastability in attention networks, limbic and 
sensorimotor networks while significantly lower metastability 
in control and default mode regions than that of other two 
groups. This observation confirms claims of default-executive 
coupling hypothesis in old age [33], which precisely suggests 
reduced segregation between default mode and executive 
control network. We provide additional evidence that 
increased coupling between these two systems is most likely 
due to reduced metastability of control network in old age. 
Most striking difference between maturation to ageing process 
is therefore can be attributed precisely to the reversed role of 
control network in terms of its significantly lower 
metastability. We speculate that process of maturation might 
gradually converge to the process of ageing when the fronto-
parietal control network decouples from the attention 
networks and couples with the default mode regions due to 
reduction in metastability of this network. 

 

V. LIMITATIONS & FUTURE WORK 
The present study explored age-effect on the dynamic 

interactions between resting state functional networks. We 
found significant differences in whole-brain metastability of 
old adults than that of middle-aged. We also found changing 
role of functional network systems in terms of their 
metastability across age groups. One notable limitation is 
the cross-sectional nature of this study. Maturation and 
senescence are continuous processes affected by many other 
factors and cross sectional studies cannot account for the 
inter-individual variability that exist due to genetic, 
molecular, neural and environmental differences.  Therefore 
test-retest validation of the results proposed here in a 
longitudinal cohort study with appropriate phenotyping is 
required. Moreover, changed metastability of BOLD signals 
does not necessarily reflect changed dynamics at neural 
level. Therefore, a computational approach is required to 
understand neural underpinnings of these age-related 
changes. How change in metastability is manifested at 
behavioral level is not yet well known. One might therefore 
consider similar analysis in task-based experimental setting 
and correlate metastability scores with the performance of 
elderly adults on various behavioral tests to understand 
whether the increased metastability of elderly adults is a 
beneficial or a detrimental process. 

 

    ACKNOWLEDGMENT 
We thank Teradata Pvt. Ltd., Hyderabad for offering a 

financial support and travel grant if the manuscript is accepted 
for presentation. 

 



 

    REFERENCES 

 

 
 
[1] S. L. Bressler and J. S. Kelso, "Cortical coordination dynamics 

and cognition," Trends in cognitive sciences, vol. 5, pp. 26-36, 
2001. 

[2] M. D. Fox and M. E. Raichle, "Spontaneous fluctuations in 
brain activity observed with functional magnetic resonance 
imaging," Nature Reviews Neuroscience, vol. 8, pp. 700-711, 
2007. 

[3] R. F. Betzel, B. Mišić, Y. He, J. Rumschlag, X.-N. Zuo, and O. 
Sporns, "Functional brain modules reconfigure at multiple 
scales across the human lifespan," arXiv preprint 
arXiv:1510.08045, 2015. 

[4] C. Grady, S. Sarraf, C. Saverino, and K. Campbell, "Age 
differences in the functional interactions among the default, 
frontoparietal control, and dorsal attention networks," 
Neurobiology of aging, vol. 41, pp. 159-172, 2016. 

[5] D. Meunier, S. Achard, A. Morcom, and E. Bullmore, "Age-
related changes in modular organization of human brain 
functional networks," Neuroimage, vol. 44, pp. 715-723, 2009. 

[6] J. Song, R. M. Birn, M. Boly, T. B. Meier, V. A. Nair, M. E. 
Meyerand, et al., "Age-related reorganizational changes in 
modularity and functional connectivity of human brain 
networks," Brain connectivity, vol. 4, pp. 662-676, 2014. 

[7] U. Lindenberger, "Human cognitive aging: Corriger la 
fortune?," Science, vol. 346, pp. 572-578, 2014. 

[8] R. Cabeza, "Hemispheric asymmetry reduction in older adults: 
the HAROLD model," Psychology and aging, vol. 17, p. 85, 
2002. 

[9] D. C. Park and P. Reuter-Lorenz, "The adaptive brain: aging and 
neurocognitive scaffolding," Annual review of psychology, vol. 
60, p. 173, 2009. 

[10] P. A. Reuter-Lorenz and K. A. Cappell, "Neurocognitive aging 
and the compensation hypothesis," Current directions in 
psychological science, vol. 17, pp. 177-182, 2008. 

[11] P. A. Reuter-Lorenz and D. C. Park, "How does it STAC up? 
Revisiting the scaffolding theory of aging and cognition," 
Neuropsychology review, vol. 24, pp. 355-370, 2014. 

[12] E. C. Hansen, D. Battaglia, A. Spiegler, G. Deco, and V. K. 
Jirsa, "Functional connectivity dynamics: modeling the 
switching behavior of the resting state," Neuroimage, vol. 105, 
pp. 525-535, 2015. 

[13] J. Qin, S.-G. Chen, D. Hu, L.-L. Zeng, Y.-M. Fan, X.-P. Chen, 
et al., "Predicting individual brain maturity using dynamic 
functional connectivity," Frontiers in human neuroscience, vol. 
9, 2015. 

[14] P. J. Hellyer, G. Scott, M. Shanahan, D. J. Sharp, and R. Leech, 
"Cognitive flexibility through metastable neural dynamics is 
disrupted by damage to the structural connectome," The Journal 
of Neuroscience, vol. 35, pp. 9050-9063, 2015. 

[15] J. L. Baird and R. E. Van Emmerik, "Young and older adults 
use different strategies to perform a standing turning task," 
Clinical Biomechanics, vol. 24, pp. 826-832, 2009. 

[16] M. Schirner, S. Rothmeier, V. K. Jirsa, A. R. McIntosh, and P. 
Ritter, "An automated pipeline for constructing personalized 
virtual brains from multimodal neuroimaging data," 
Neuroimage, vol. 117, pp. 343-357, 2015. 

[17] R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. 
Dickerson, D. Blacker, et al., "An automated labeling system for 
subdividing the human cerebral cortex on MRI scans into gyral 

based regions of interest," Neuroimage, vol. 31, pp. 968-980, 
2006. 

[18] E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and 
M. Sams, "Functional magnetic resonance imaging phase 
synchronization as a measure of dynamic functional 
connectivity," Brain connectivity, vol. 2, pp. 91-101, 2012. 

[19] J. Cabral, E. Hugues, O. Sporns, and G. Deco, "Role of local 
network oscillations in resting-state functional connectivity," 
Neuroimage, vol. 57, pp. 130-139, 2011. 

[20] G. Deco and M. L. Kringelbach, "Metastability and coherence: 
extending the communication through coherence hypothesis 
using a whole-brain computational perspective," Trends in 
neurosciences, vol. 39, pp. 125-135, 2016. 

[21] M. Rubinov and O. Sporns, "Complex network measures of 
brain connectivity: uses and interpretations," Neuroimage, vol. 
52, pp. 1059-1069, 2010. 

[22] M. Rubinov and O. Sporns, "Weight-conserving 
characterization of complex functional brain networks," 
Neuroimage, vol. 56, pp. 2068-2079, 2011. 

[23] M. E. Newman, "Modularity and community structure in 
networks," Proceedings of the national academy of sciences, 
vol. 103, pp. 8577-8582, 2006. 

[24] B. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. 
Lashkari, M. Hollinshead, et al., "The organization of the 
human cerebral cortex estimated by intrinsic functional 
connectivity," Journal of neurophysiology, vol. 106, pp. 1125-
1165, 2011. 

[25] S. K. Kachigan, Statistical analysis: An interdisciplinary 
introduction to univariate & multivariate methods: Radius 
Press, 1986. 

[26] H. Scheffe, "A method for judging all contrasts in the analysis 
of variance," Biometrika, vol. 40, pp. 87-110, 1953. 

[27] B. G. Tabachnick, L. S. Fidell, and S. J. Osterlind, "Using 
multivariate statistics," 2001. 

[28] M. Fukushima, R. F. Betzel, Y. He, M. A. de Reus, M. P. 
Heuvel, X.-N. Zuo, et al., "Individual variability and 
connectivity dynamics in modular organization of human 
cortical functional networks," arXiv preprint arXiv:1511.06427, 
2015. 

[29] N. U. Dosenbach, D. A. Fair, F. M. Miezin, A. L. Cohen, K. K. 
Wenger, R. A. Dosenbach, et al., "Distinct brain networks for 
adaptive and stable task control in humans," Proceedings of the 
National Academy of Sciences, vol. 104, pp. 11073-11078, 
2007. 

[30] E. Tognoli and J. S. Kelso, "The metastable brain," Neuron, vol. 
81, pp. 35-48, 2014. 

[31] Y. Yao, W. Lu, B. Xu, C. Li, C. Lin, D. Waxman, et al., "The 
increase of the functional entropy of the human brain with age," 
arXiv preprint arXiv:1406.1976, 2014. 

[32] C. L. Grady and D. D. Garrett, "Understanding variability in the 
BOLD signal and why it matters for aging," Brain imaging and 
behavior, vol. 8, pp. 274-283, 2014. 

[33] G. R. Turner and R. N. Spreng, "Prefrontal engagement and 
reduced default network suppression co-occur and are 
dynamically coupled in older adults: the default–executive 
coupling hypothesis of aging," Journal of cognitive 
neuroscience, 2015. 

 
 


